Posibilistic Logic是处理不确定和部分不一致信息的最扩展方法。关于正常形式,可能性推理的进步大多专注于字幕形式。然而,现实世界问题的编码通常导致非人(NC)公式和NC-To-Clausal翻译,产生严重的缺点,严重限制了字符串推理的实际表现。因此,通过计算其原始NC形式的公式,我们提出了几种贡献,表明可能在可能的非字词推理中也是可能的显着进展。 {\ em首先,我们定义了{\ em possibilistic over非词素知识库,}或$ \ mathcal {\ overline {h}} _ \ sigma $的类别,其中包括类:可能主义的喇叭和命题角 - NC。 $ \ mathcal {\ overline {h}} _ \ sigma $被显示为标准喇叭类的一种NC类似的。 {\ em hightly},我们定义{\ em possibilistic非字词单元分辨率,}或$ \ mathcal {u} _ \ sigma $,并证明$ \ mathcal {u} _ \ sigma $正确计算不一致程度$ \ mathcal {\ overline {h}} _ \ sigma $成员。 $ \ Mathcal {Ur} _ \ \ Sigma $之前未提出,并以人为人的方式制定,这会让其理解,正式证明和未来延伸到非人类决议。 {\ em第三},我们证明计算$ \ mathcal {\ overline {h}} _ \ sigma $成员的不一致程度是多项式时间。虽然可能存在于可能存在的逻辑中的贸易课程,但所有这些都是字符串,因此,$ \ mathcal {\ overline {h}} _ \ sigma $ of to是可能的主要推理中的第一个特征的多项式非锁友类。
translated by 谷歌翻译
突出非克劳兰(NC)公式的富有表现性比基于氏子型公式的指数更丰富。然而,氏菌效率优于非克劳尿的效率。实际上,后者的一个主要弱点是,虽然喇叭子宫公式以及喇叭算法,对于高效率至关重要,但是已经提出了非符号形式的喇叭状公式。为了克服这种弱点,我们通过将喇叭图案充分提升到NC形式,定义HOLE非字母(HORN-NC)公式的混合类$ \ MATHBB {H_ {NC}}。争论$ \ MATHBB {H_ {NC}} $以及未来的Horn-NC算法,应随着喇叭类的股份效率增加,增加非信用效率。其次,我们:(i)给出$ \ mathbb的紧凑,归纳定义{h_ {nc}} $; (ii)证明了句法$ \ mathbb {h_ {nc}} $ suppups over class,但语义上两个类都是等效的,并且(iii)表征属于$ \ mathbb {h_ {nc}} $的非锁友公式。第三,我们定义了非字词单元分辨率计算,$ ur_ {nc} $,并证明它检查多项式时间$ \ mathbb {h_ {nc}} $的可靠性。这一事实是我们的知识,使$ \ mathbb {h_ {nc}} $中的nc推理中的第一个特征多项式类。最后,我们证明了$ \ mathbb {h_ {nc}} $线性识别,也是严格的是法官和比喇叭类呈指数富裕。我们在NC自动推理中讨论了这一点,例如,可靠性解决,定理证明,逻辑编程等可以直接受益于$ \ mathbb {h_ {nc} $和$ ur_ {nc} $,它作为其被证明属性的副产物,$ \ mathbb { H_ {NC}} $ as作为分析喇叭函数和含义系统的新替代方案。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
Spectrum coexistence is essential for next generation (NextG) systems to share the spectrum with incumbent (primary) users and meet the growing demand for bandwidth. One example is the 3.5 GHz Citizens Broadband Radio Service (CBRS) band, where the 5G and beyond communication systems need to sense the spectrum and then access the channel in an opportunistic manner when the incumbent user (e.g., radar) is not transmitting. To that end, a high-fidelity classifier based on a deep neural network is needed for low misdetection (to protect incumbent users) and low false alarm (to achieve high throughput for NextG). In a dynamic wireless environment, the classifier can only be used for a limited period of time, i.e., coherence time. A portion of this period is used for learning to collect sensing results and train a classifier, and the rest is used for transmissions. In spectrum sharing systems, there is a well-known tradeoff between the sensing time and the transmission time. While increasing the sensing time can increase the spectrum sensing accuracy, there is less time left for data transmissions. In this paper, we present a generative adversarial network (GAN) approach to generate synthetic sensing results to augment the training data for the deep learning classifier so that the sensing time can be reduced (and thus the transmission time can be increased) while keeping high accuracy of the classifier. We consider both additive white Gaussian noise (AWGN) and Rayleigh channels, and show that this GAN-based approach can significantly improve both the protection of the high-priority user and the throughput of the NextG user (more in Rayleigh channels than AWGN channels).
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译